Have you found an error or do you want to add more
information to these pages? You can contact me at the bottom of the home page. |
The volt-drop across the inductor VL = L | di dt |
So the supply voltage E = iR + L | di dt |
E = iR + L | di dt |
E - iR = L | di dt |
E - iR L |
= | di dt |
now I will transpose this so di is on one side with the 'i' part and dt with L |
1 E - iR |
di = | dt L |
I can put integral signs on both |
∫ | 1 E - iR |
di = | ∫ | 1 L |
dt |
Notice that | ∫ | 1 E - iR |
di is like | ∫ | 1 i |
di and the E - iR part is linear (a line). |
u = E - iR so | du di |
= -R |
re-arranging this means that - | du R |
= di |
So, to find the solution to | ∫ | 1 E - iR |
di, we swap E-iR with u and di with - | du R |
This gives us | ∫ | 1 u |
du -R |
which I can
re-arrange to put all the 'u' expressions on one side and the constants outside of the integral (to make it a bit easier) |
- | 1 R |
∫ | 1 u |
du,
this is integrated to become: |
ln(u) -R |
+ K, where K is just some constant. We can substitute back E - iR for u and get: |
ln(E
- iR) -R |
+ K |
∫ | 1 E - iR |
di = | ∫ | 1 L |
dt |
- | ln(E - iR) R |
+ K = | ∫ | 1 L |
dt, and we can find the second part to be |
- | ln(E - iR) R |
= | t L |
+ K (this is the general solution) |
- | ln(E - 0R) R |
= | 0 L |
+ K |
- | ln(E) R |
= | K so we can put this back in to the general solution, in replacement for K |
- | ln(E - iR) R |
= | t L |
- | ln(E) R |
ln(E) R |
- | ln(E
- iR) R |
= | t L |
1 R |
ln | ( | E E - iR |
) | = | t L |
ln | ( | E E - iR |
) | = | Rt L |
i = | E |
( | 1 - e | - | Rt L | ) |
R |
Steady state current = | E | and the transient current = - e | - | Rt L |
R |
E - iR - L | di dt | = 0 |
E - R•i(t) - L | d dt | i(t) = 0 |
E s |
- Ls•i(s) -R•i(s) = 0 |
E s |
= i(s)(Ls - R) |
i(s) = | E s(Ls - R) |
i(t) = | E |
( | 1 - e | - | Rt L | ) |
R |
Have you found an error or do you want to add more
information to these pages? You can contact me at the bottom of the home page. |