| a(x) = x2 | a'(x) = 2x | |
| b(x) = sin x | b'(x) = cos x |
| y(x) = | a(x) |
| b(x) |
| y'(x) = | a'(x)•b(x) - a(x)•b'(x) |
| b2(x) |
| a(x) = 2x | a'(x) = 2 | |
| b(x) = ea(x) | b'(x) = ea(x) = e2x | |
| c(x) = Sin b(x) | c'(x) = Cos b(x) = Cos e2x |
| δSin-1x | = | 1 |
| δx | √(1-x2) |
| δCos-1x | = | -1 |
| δx | √(1-x2) |
| δTan-1x | = | 1 |
| δx | 1+x2 |
| Surface area = | ∫ | b | 2πy√ | (1 + | ( | dy | ) | 2 | ) dx |
| a | dx |
| a(x) = r | a'(x)
= 0 (because r is a constant) |
|
| b(x) = √(1 - x2/r2) | b'(x) = ? |
| g(x) = 1 - | x2 | g'(x)
= -2 |
x | |
| r2 | r2 |
| h(x) = √g(x) | h'(x) = | 1 | |
| 2√(g(x)) |
| = -2 | x | • | 1 | = | -x |
| r2 | 2√(1 - x2/r2) | r2√(1- x2/r2) |
| b'(x) = | -x |
| r2√(1- x2/r2) |
| = - | x |
| r√(1- x2/r2) |
| ( | dy | ) | 2 |
| dx |
| x2 | = | x2 | |
| r2(1- x2/r2) | r2 - x2 | as long as |x| ≠ r |
| 1 + | ( | dy | ) | 2 |
| dx |
| 1 + | x2 | = | (r2- x2) + x2 | = | r2 | |
| r2- x2 | r2 - x2 | r2 - x2 | as long as r2 ≠ x2 |
| Surface area = 2πr | ∫ | r | √(1 - x2/r2)√ | ( | r2 | ) | dx |
| -r | r2 - x2 |
| Surface area = 2πr | ∫ | r | √(( | 1- | x2 | )( | r2 | )) | dx |
| -r | r2 | r2 - x2 |
| r2 - x2 | |
| r2 - x2 | which equals 1 if r2 ≠ x2 and √1 = 1 |
| Surface area = 2πr | ∫ | r | 1 dx = 2πr | [ | x | ] | r |
| -r | -r |
| [ln(f(x))]' = | f'(x) |
| f(x) |
| [ln(f(x))]' = | 1 x |
+ | 1 x |
| f'(x) f(x) |
= | 1 x |
+ | 1 x |
| f(x) |
= | x2
sin x cos 2x |
now I take the logarithm of this and split it up |
| f'(x) f(x) |
= | 2x
x2 |
+ | cos x sin x |
- | -2 sin 2x cos 2x |
which simplifies to: |
| f'(x) f(x) |
= | 2 x |
+ | cos x sin x |
+ 2 tan 2x | so the next step is to multiply each side by f(x): |
| f'(x) = | ( | x2
sin x cos 2x |
)( | 2 x |
+ cot x + 2 tan 2x | ) |
| Have you found an error or do you want to add more
information to these pages? You can contact me at the bottom of the home page. |